

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0562 of 15 July 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

Walraven Highload Anchor WHA1

Torque controlled expansion anchor for use in concrete

J. van Walraven Holding B.V. Industrieweg 5 3641 RK Mijdrecht NIEDERLANDE

Walraven factory A5

20 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

European Technical Assessment ETA-16/0562

Page 2 of 20 | 15 July 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z42809.16 8.06.01-191/16

European Technical Assessment ETA-16/0562

Page 3 of 20 | 15 July 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The Walraven Highload Anchor WHA1 is an anchor made of galvanised steel or made of stainless steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type WHA1T with threaded bolt,
- Anchor type WHA1H with hexagon head screw,
- Anchor type WHA1C with countersunk washer and countersunk screw.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic resistance for static and quasi-static loading	See Annex C1 to C5			
Characteristic resistance for seismic performance category C1 and C2	See Annex C6 to C7			
Displacements under tension and shear loads	See Annex C9 and C10			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	See Annex C8

3.3 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z42809.16 8.06.01-191/16

European Technical Assessment ETA-16/0562

Page 4 of 20 | 15 July 2016

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

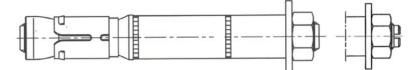
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

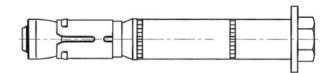
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

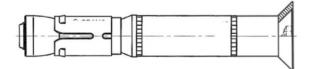
Issued in Berlin on 15 July 2016 by Deutsches Institut für Bautechnik


Andreas Kummerow beglaubigt: p.p. Head of Department Lange

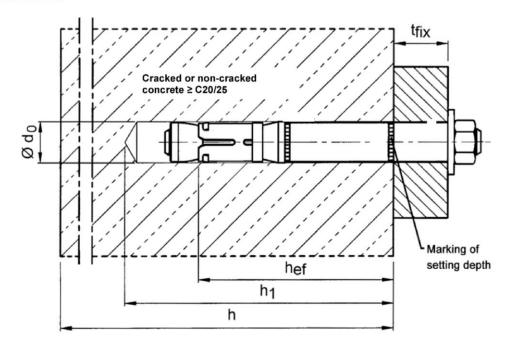
Z42809.16 8.06.01-191/16


Highload Anchor WHA1

Anchor type WHA1T with threaded bolt


WHA1T (M6-M20) WHA1T (M8-M16) A4

Anchor type WHA1H with hexagon head screw


WHA1H (M6-M20) WHA1H (M8-M16) A4

Anchor type WHA1C with countersunk washer and countersunk screw

WHA1C (M6-M12) WHA1C (M8-M12) A4

Installation condition

Walraven Highload Anchor WHA1

Product description

Product and installation situation

Annex A1

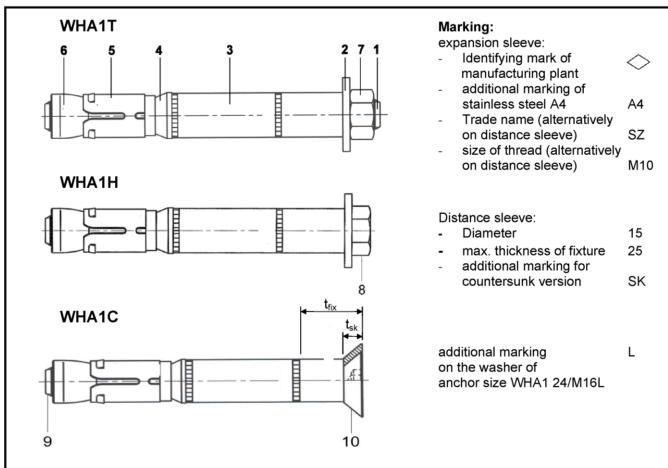


Table A1: Designation of anchor parts and materials

Part	Designation	Materials galvanised ≥ 5 μm, acc. to EN ISO 4042:1999	Stainless steel A4
1	Threaded bolt	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
2	Washer	Steel, EN 10139:1997	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
3	Distance sleeve	Precision steel tubes DIN 2394/2393	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
4	Ring	Polyethylene	Polyethylene
5	Expansion sleeve	Steel, EN 10139:1997	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
6	Threaded cone	Steel, Strength class 8, EN ISO 898-2:2012	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
7	Hexagon nut	Steel, Strength class 8, EN ISO 898-2:2012	ISO 3506, strength class 70, stainless steel 1.4401 or 1.4571, EN 10088:2005
8	Hexagon head screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
9	Countersunk screw	Steel, Strength class 8.8, EN ISO 898-1:2013	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005
10	Countersunk washer	Steel, EN 10083-2:2006	Stainless steel, 1.4401, 1.4404 or 1.4571, EN 10088:2005

Walraven Highload Anchor WHA1	
Product description Marking and materials	Annex A2

Specifications of intended use

Highload Anchor WHA1, steel zinc plated	10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Static or quasi-static action	✓						
Seismic action (WHA1T and WHA1H)	- C1 + C2						
Fire exposure	R 30 R 120						

Highload Anchor WHA1, stainless steel A4	12/M8	15/M10	18/M12	24/M16	
Static or quasi-static action	✓				
Seismic action (WHA1T and WHA1H)	C1 + C2				
Fire exposure	R30 R120				

Base materials:

- Cracked and non-cracked concrete
- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000
- Strength classes C20/25 to C50/60 according to EN 206-1:2000

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel or stainless steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where deicing materials are used.)

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position
 of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to
 supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
 - ETAG 001, Annex C, design method A, Edition August 2010 or
 - CEN/TS 1992-4:2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045, Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
 - EOTA Technical Report TR 020, Edition May 2004 or
 - CEN/TS 1992-4: 2009. Annex D

(It must be ensured that local spalling of the concrete cover does not occur)

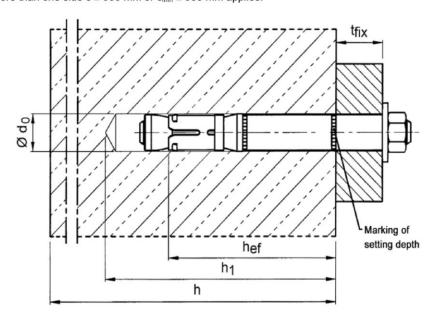
Installation:

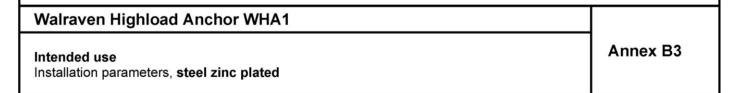
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load it is not in the direction of load application.
- Anchor installation such that the effective anchorage depth is complied with. This compliance is ensured when the embedment mark of the anchor does no more exceed the concrete surface.

Walraven Highload Anchor WHA1	
Intended use Specifications	Annex B1

Installation instructions 1 Drill hole perpendicular to concrete surface. 2 Blow out dust. 3 Drive in anchor. T_{INST} Apply tightening torque T_{inst} by using calibrated torque wrench.

L		
	Walraven Highload Anchor WHA1	
	Intended use Installation instructions	Annex B2




Table B1: Installation parameters, steel zinc plated

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Size of thread		[-]	M6	M8	M10	M12	M16	M16	M20
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125
Nominal diameter of drill bit	$d_0 =$	[mm]	10	12	15	18	24	24	28
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	10,45	12,5	15,5	18,5	24,55	24,55	28,55
Depth of drill hole	h₁≥	[mm]	65	80	95	105	130	145	160
Diameter of clearance hole in the fixture	$d_f \! \leq \!$	[mm]	12	14	17	20	26	26	31
Thickness of fixture	t _{fix min}	[mm]	0	0	0	0	0	0	0
WHA1T and WHA1H	t _{fix max}	[mm]	200	200	200	250	300	300	300
Thickness of fixture	t _{fix min} 2)	[mm]	8	10	14	18	-	-	-
WHA1C	t _{fix max}	[mm]	200	200	200	250	-	-	-
Thickness of countersunk washer WHA1C	t _{sk}	[mm]	4	5	6	7	-	-	1
Required T _{inst}	(WHA1T, WHA1H)	[Nm]	15	30	50	80	160	160	280
setting torque T _{inst}	(WHA1C)	[Nm]	10	25	55	70	-	-	-
Minimum thickness of member	h _{min}	[mm]	100	120	140	160	200	230	250
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	70	80	100	100	125
- VA	for c ≥	[mm]	80	100	120	160	180	180	300
Minimum edge distance 1) 3)	C _{min}	[mm]	50	60	70	80	100	100	180
	for s ≥	[mm]	100	120	175	200	220	220	540

¹⁾ Intermediate values by linear interpolation

For fire exposure from more than one side $c \ge 300$ mm or $c_{min} \ge 300$ mm applies.

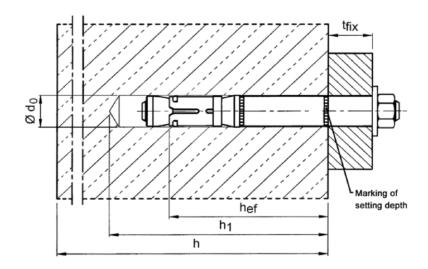

²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).

Table B2: Installation parameters, stainless steel A4

Anchor size		12/M8	15/M10	18/M12	24/M16	
Size of thread		[-]	M8	M10	M12	M16
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
Nominal diameter of drill bit	d ₀ =	[mm]	12	15	18	24
Cutting diameter of drill bit	$d_{cut} \le$	[mm]	12,5	15,5	18,5	24,55
Depth of drill hole	h₁ ≥	[mm]	80	95	105	130
Diameter of clearance hole in the	fixture $d_f \le$	[mm]	14	17	20	26
Thickness of fixture	t _{fix min}	[mm]	0	0	0	0
WHA1T and WHA1H	t _{fix max}	[mm]	200	200	250	300
Thickness of fixture	t _{fix min} 2)	[mm]	10	14	18	-
WHA1C	t _{fix max}	[mm]	200	200	250	-
Thickness of countersunk washer	WHA1C t _{sk}	[mm]	5	6	7	-
_	T _{inst} (WHA1T)	[Nm]	35	55	90	170
Required setting torque	T _{inst} (WHA1H)	[Nm]	30	50	80	170
	T _{inst} (WHA1C)	[Nm]	17,5	42,5	50	-
Minimum thickness of member	h _{min}	[mm]	120	140	160	200
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	70	80
cracked concrete	for c ≥	[mm]	80	120	140	180
Minimum edge distance 1) 3)	C _{min}	[mm]	50	60	70	80
cracked concrete	for $s \ge$	[mm]	80	120	160	200
Minimum spacing 1) 3)	S _{min}	[mm]	50	60	70	80
non-cracked concrete	for c ≥	[mm]	80	120	140	180
Minimum edge distance 1) 3)	C _{min}	[mm]	50	85	70	180
non-cracked concrete	for s ≥	[mm]	80	185	160	80

¹⁾ Intermediate values by linear interpolation

Walraven Highload Anchor WHA1 **Annex B4** Intended use Installation parameters, stainless steel A4

²⁾ Depending on the existing shear load, the thickness of the fixture may be reduced to the thickness of the countersunk washer t_{sk} (see Annex A2). It must be verified that the present shear load can be transferred completely into the distance sleeve (bearing of hole).
3) For fire exposure from more than one side c ≥ 300 mm or c_{min} ≥ 300 mm applies.

Table C1: Characteristic values for tension load, cracked concrete under static or quasi-static action, steel zinc plated

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196
Partial safety factor	γMs	[-]				1,5			
Pull-out failure									
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	5	12	16	1)	1)	1)	1)
Increasing factor for N _{Rk,p}	Ψс	[-]				$\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$			
Concrete cone failure									
Effective anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]				7,2			

¹⁾ Pull-out is not decisive.

Table C2: Characteristic values for tension load, cracked concrete under static or quasi-static action, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]		1,	,0	
Steel failure						
WHA1T						
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial safety factor	γMs	[-]		1,	,5	
WHA1H and WHA1C						
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial safety factor	γMs	[-]		1,8	87	
Pull-out failure						
Characteristic resistance in cracked concrete C20/25	$N_{Rk,p}$	[kN]	9	16	1)	1)
Increasing factor for N _{Rk,p}	Ψс	[-]		$\left(\frac{f_{ck,cu}}{25}\right)$	be) ^{0,5}	
Concrete cone failure						
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
Factor acc. to CEN/TS 1992-4	k _{cr}	[-]		7,	,2	

¹⁾ Pull-out is not decisive.

Walraven Highload Anchor WHA1	
Performance Characteristic values for tension load in cracked concrete under static or quasi-static action	Annex C1

Table C3: Characteristic values for tension load in non-cracked concrete, under static or quasi-static action, steel zinc plated

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]				1,0			
Steel failure									
Characteristic resistance	$N_{Rk,s}$	[kN]	16	29	46	67	126	126	196
Partial safety factor	γ_{Ms}	[-]				1,5			
Pull-out failure									
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	1)	20	30	1)	1)	1)	1)
Splitting failure (The higher re-	sistance of	Case 1 a	ind Case 2	may be a	pplied.)				
Case 1									
Characteristic resistance in concrete C20/25	$N^0_{Rk,sp}$	[kN]	12 ²⁾	16 ²⁾	25 ²⁾	30 ²⁾	40 ²⁾	70	50 ²⁾
Spacing	S _{cr,sp}	[mm]				3 h _{ef}			
Edge distance	$C_{cr,sp}$	[mm]				1,5 h _{ef}			
Case 2 (acc. to ETAG 001, Annex	x C, equation	on (5.3))							
Spacing	S _{cr,sp}	[mm]			5 h _{ef}			3 h _{ef}	5 h _{ef}
Edge distance	$C_{cr,sp}$	[mm]			$2,5 h_{ef}$			1,5 h _{ef}	$2,5 h_{ef}$
Increasing factor for $N_{Rk,p}$ and $N^0_{Rk,sp}$	Ψс	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$						
Concrete cone failure									
Effective Anchorage depth	h _{ef}	[mm]	50	60	71	80	100	115	125
Factor acc. to CEN/TS 1992-4	k _{ucr}	[-]				10,1			·

¹⁾ Pull-out is not decisive.

Walraven Highload Anchor WHA1

Performance

Characteristic values for tension load in non-cracked concrete, under static or quasi-static action, steel zinc plated

 $^{^{2)}}$ For the proof against splitting failure, $N^0_{\,\text{Rk,c}}$ has to be has to be replaced by $N^0_{\,\text{Rk,sp.}}$

Table C4: Characteristic values for tension load in non-cracked concrete under static or quasi-static action, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]		1	,0	
Steel failure						
WHA1T						
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial safety factor	γMs	[-]		1	,5	
WHA1H and WHA1C						
Characteristic resistance	$N_{Rk,s}$	[kN]	26	41	60	110
Partial safety factor	γMs	[-]		1,	87	
Pull-out failure						
Characteristic resistance in non-cracked concrete C20/25	$N_{Rk,p}$	[kN]	16	25	35	1)
Increasing factor for N _{Rk,p}	Ψс	[-]	$\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$			
Splitting failure		'				
Spacing	S _{cr,sp}	[mm]	360	470	530	600
Edge distance	C _{cr,sp}	[mm]	180	235	265	300
Concrete cone failure				•		•
Effective anchorage depth	h _{ef}	[mm]	60	71	80	100
Factor acc. to CEN/TS 1992-4	k _{ucr}	[-]		10),1	

¹⁾ Pull-out is not decisive.

Walraven Highload Anchor WHA1

Performance

Characteristic values for **tension loads** in **non-cracked concrete** under static or quasi-static action, **stainless steel A4**

Table C5: Characteristic values of shear load under static or quasi-static action, steel zinc plated

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Steel failure without lever a	rm								
WHA1T									
Characteristic resistance	$V_{Rk,s}$	[kN]	16	25	36	63	91	91	122
Ductility factor	k_2	[-]				1,0			
Partial safety factor	γ_{Ms}	[-]				1,25			
WHA1H and WHA1C									
Characteristic resistance	$V_{Rk,s}$	[kN]	18	30	48	73	126	126	150
Ductility factor	k_2	[-]				0,8			
Partial safety factor	γ_{Ms}	[-]				1,25			
Steel failure with lever arm									
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	12	30	60	105	266	266	519
Partial safety factor	γ_{Ms}	[-]				1,25			
Concrete pry-out failure									
Factor k acc. to ETAG 001, Annex C or k ₃ acc. to CEN/TS 1992-4	k ₍₃₎	[-]	1,8	2,0					
Concrete edge failure									
Effective length of anchor in shear loading	I _f	[mm]	50	60	71	80	100	115	125
Outside diameter of anchor	d_{nom}	[mm]	10	12	15	18	24	24	28

Walraven Highload Anchor WHA1	
Performance Characteristic values for shear load under static or quasi-static action, steel zinc plated	Annex C4

Table C6: Characteristic values for shear load under static or quasi-static action, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16	
Steel failure without lever arm				•			
WHA1T							
Characteristic resistance	$V_{Rk,s}$	[kN]	24	37	62	92	
Ductility factor	k_2	[-]		1	,0		
Partial safety factor	γ_{Ms}	[-]		1,	25		
WHA1H and WHA1C							
Characteristic resistance	$V_{Rk,s}$	[kN]	24	37	62	92	
Ductility factor	k_2	[-]		0	,8		
Partial safety factor	γ_{Ms}	[-]		1,	36		
Steel failure with lever arm							
WHA1T							
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	232	
Ductility factor	k_2	[-]		1	,0		
Partial safety factor	γ_{Ms}	[-]		1,	25		
WHA1H and WHA1C							
Characteristic resistance	$M^0_{Rk,s}$	[Nm]	26	52	92	232	
Ductility factor	k_2	[-]		0	,8		
Partial safety factor	γ_{Ms}	[-]	1,56				
Concrete pry-out failure							
Factor k acc. to ETAG 001, Annex C or k₃ acc. to CEN/TS 1992-4	k ₍₃₎	[-]	2,0				
Concrete edge failure							
Effective length of anchor in shear loading	I _f	[mm]	60	71	80	100	
Outside diameter of anchor	d_{nom}	[mm]	12	15	18	24	

Performance

Characteristic values for **shear load** under static or quasi-static action, **stainless steel A4**

Table C7:	Characteristic values	for seismic action,	Category	C1 and C2,	steel zinc plated
-----------	-----------------------	---------------------	----------	------------	-------------------

Anchor size			12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Tension load								
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1	,0		
Steel failure								
Characteristic tension resistance category C1	$N_{\text{Rk,s,seis,C1}}$	[kN]	29	46	67	126	126	196
Characteristic tension resistance category C2	$N_{\text{Rk},s,\text{seis},\text{C2}}$	[kN]	29	46	67	126	126	196
Partial safety factor	γ̃Ms,seis	[-]			1	,5		
Pull-out failure								
Characteristic tension resistance category C1	$N_{Rk,p,seis,C1}$	[kN]	12	16	25	36	44,4	50,3
Characteristic tension resistance category C2	$N_{\text{Rk},p,\text{seis},\text{C2}}$	[kN]	5,4	16,4	22,6	29,0	41,2	43,6
Increasing factor for $N_{Rk,p,seis}$	ψ_{c}	[-]			1	,0		
Shear load								
Steel failure without lever arm								
WHA1T								
Characteristic shear resistance category C1	$V_{Rk,s,seis,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4
Characteristic shear resistance category C2	$V_{\text{Rk},\text{s},\text{seis},\text{C2}}$	[kN]	12,7	20,5	31,5	50,1	50,1	67,1
WHA1H								
Characteristic shear resistance category C1	$V_{Rk,s,seis,C1}$	[kN]	18,0	27,1	43,4	51,9	51,9	96,4
Characteristic shear resistance category C2	$V_{\text{Rk,s,seis,C2}}$	[kN]	12,7	20,5	31,5	69,3	69,3	67,1
Partial safety factor $\gamma_{\text{Ms,seis}}$ [-] 1,25								
Steel failure with lever arm								
Characteristic resistance	$M^0_{Rk,s,seis}$	[Nm]		no	performan	ce determi	ned	

Walraven Highload Anchor WHA1	
Performance Characteristic values for seismic action, steel zinc plated	Annex C6

Table C8: Characteristic values for seismic action, Category C1 and C2, stainless steel A4

Anchor size			12/M8	15/M10	18/M12	24/M16
Tension load						
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]		1,	,0	
Steel failure						
Characteristic tension resistance, category C1	$N_{Rk,s,seis,C1}$	[kN]	26	41	60	110
Characteristic tension resistance, category C2	$N_{Rk,s,seis,C2}$	[kN]	26	41	60	110
Partial safety factor WHA1T	γ̃Ms,seis	[-]		1,	5	
Partial safety factor WHA1H	γ̃Ms,seis	[-]	1,87			
Pull-out failure						
Characteristic tension resistance, category C1	$N_{Rk,p,seis,C1}$	[kN]	9	16	26	36
Characteristic tension resistance, category C2	$N_{Rk,p,seis,C2}$	[kN]	4,8	16,5	24,8	44,5
Increasing factor for N _{Rk,p,seis}	Ψc	[-]		1,	,0	
Shear load						
Steel failure without lever arm						
Characteristic shear resistance, category C1	$V_{Rk,s,seis,C1}$	[kN]	9,6	13,3	25,4	75,4
Characteristic shear resistance, category C2	$V_{Rk,s,seis,C2}$	[kN]	9,7	14,0	18,0	32,2
Partial safety factor WHA1T	γ _{Ms,seis}	[-]		1,	25	
Partial safety factor WHA1H	γ _{Ms,seis}	[-]	1,36			
Steel failure with lever arm						
Characteristic resistance	M ⁰ _{Rk,s,seis}	[Nm]	no	performand	ce determir	ned

Walraven	Highload	Anchor	WHA1
----------	----------	--------	------

Performance

Characteristic values for seismic action, stainless steel A4

Table C9: Characteristic values for **tension and shear load** under **fire exposure** in cracked and non-cracked concrete C20/25 to C50/60

Anchor size				10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Tension load										
Steel failure										
Steel zinc plate	ed									
-	R30			1,0	1,9	4,3	6,3	1	1,6	18,3
Characteristic	R60	N _{Rk,s,fi}	[kN]	0,8	1,5	3,2	4,6	8	3,6	13,5
resistance	R90			0,6	1,0	2,1	3,0	5	5,0	7,7
	R120			0,4	0,8	1,5	2,0	3	3,1	4,9
Stainless steel	A4									
	R30		[kN]	-	6,1	10,2	15,7	29,2	-	-
Characteristic	R60	NI.		-	4,4	7,3	11,1	20,6	-	-
resistance	R90	$N_{Rk,s,fi}$		-	2,6	4,3	6,4	12,0	-	-
	R120			-	1,8	2,8	4,1	7,7	-	-
Shear load										
Steel failure w	ithout lever a	rm								
Steel zinc plate	ed									
Characteristic resistance	R30	· V _{Rk,s,fi}	[kN]	1,0	1,9	4,3	6,3	11,6		18,3
	R60			0,8	1,5	3,2	4,6	8,6		13,5
	R90			0,6	1,0	2,1	3,0	5,0		7,7
	R120			0,4	0,8	1,5	2,0	3,1		4,9
Stainless steel	A4									
	R30	$V_{Rk,s,fi}$		-	14,3	22,7	32,8	61,0	-	-
Characteristic	R60		[kN]	-	11,1	17,6	25,5	47,5	-	-
resistance	R90			-	7,9	12,6	18,3	34,0	-	-
	R120			-	6,3	10,0	14,6	27,2	-	-
Steel failure w	ith lever arm									
Steel zinc plate	ed									
	R30			0,8	2,0	5,6	9,7	2	4,8	42,4
Characteristic	R60	. . 0	[[0,6	1,5	4,1	7,2	18,3		29,8
resistance	R90	M ⁰ _{Rk,s,fi}	[Nm]	0,4	1,0	2,7	4,7	11,9		17,1
	R120			0,3	0,8	1,9	3,1	6	5,6	10,7
Stainless steel	A4									
	R30			-	6,2	13,2	24,4	61,8	-	-
Characteristic	R60	a a 0	 	-	4,5	9,4	17,2	43,6	-	-
resistance	R90	$M^0_{Rk,s,fi}$	[Nm]	-	2,7	5,6	10,0	25,3	-	-
	R120			-	1,8	3,6	6,4	16,2	-	-

The characteristic resistances for pull-out failure, concrete cone failure, concrete pry-out and concrete edge failure can be calculated according to TR020 / CEN/TS 1992-4.

Walraven Highload Anchor WHA1	
Performance Characteristic values for tension and shear loads under fire exposure	Annex C8

Table C10: Displacements under tension load

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Steel, zinc plated									
Tension load in cracked concrete	Ν	[kN]	2,4	5,7	7,6	12,3	17,1	21,1	24
Displacement	δ_{N0}	[mm]	0,5	0,5	0,5	0,7	0,8	0,7	0,9
	$\delta_{N^{\infty}}$	[mm]	2,0	2,0	1,3	1,3	1,3	1,3	1,4
Tension load in non-cracked concrete	Ν	[kN]	8,5	9,5	14,3	17,2	24	29,6	34
Displacement	δ_{N0}	[mm]	0,8	1,0		1,1		1,3	0,3
	$\delta_{N^{\infty}}$	[mm]	3	,4	1,7			2,3	1,4
Seismic action C2									
Displacement for DLS	$\delta_{\text{N,seis,C2(DLS)}}$	[mm]	-	3,3	3,0	5,0	3,0	3,0	4,0
Displacement for ULS	$\delta_{\text{N,seis,C2(ULS)}}$	[mm]	-	12,2	11,3	16,0	9,2	9,2	13,8
Stainless steel A4									
Tension load in cracked concrete	N	[kN]	-	4,3	7,6	12,1	17,0	-	-
Displacement	δ_{N0}	[mm]	-	0,5	0,5	1,3	0,5	-	-
	$\delta_{N\infty}$	[mm]	-	1,2	1,6	1,8	1,6	-	-
Tension load in non-cracked concrete	N	[kN]	-	7,6	11,9	16,7	24,1	-	-
Displacement	$_{-}$ δ_{N0}	[mm]	-	0,2	0,3	1,2	1,5	-	-
	$\delta_{N^{\infty}}$	[mm]	-		1,	,1		-	-
Seismic action C2									
Displacement for DLS	$\delta_{\text{N,seis,C2(DLS)}}$	[mm]	-	4,7	4,5	4,3	4,9	-	-
Displacement for ULS	$\delta_{\text{N,seis,C2(ULS)}}$	[mm]	-	13,3	12,7	9,7	10,1	-	-

Walraven Highload Anchor WHA1	
Performance Displacements under tension load	Annex C9

Table C11: Displacements under shear load

Anchor size			10/M6	12/M8	15/M10	18/M12	24/M16	24/M16L	28/M20
Steel, zinc plated									
WHA1T									
Shear load in cracked ar non-cracked concrete	nd V	[kN]	9,1	14	20,7	35,1	52,1	52,1	77
Displacement	δ_{V0}	[mm]	2,5	2,1	2,7	3,0	5,1	5,1	4,3
	$\delta_{V^{\infty}}$	[mm]	3,8	3,1	4,1	4,5	7,6	7,6	6,5
Seismic action C2									
Displacement for DLS	$\delta_{V,seis,C2(DLS)}$	[mm]	-	2,3	3,1	3,0	2,6	2,6	1,6
Displacement for ULS	$\delta_{V,seis,C2(ULS)}$	[mm]	-	4,8	6,4	6,1	6,6	6,6	4,8
WHA1H and WHA1C									
Shear load in cracked ar non-cracked concrete	nd V	[kN]	10,1	17,1	27,5	41,5	72	72	77
Displacement	δ_{V0}	[mm]	2,9	2,5	3,6	3,5	7,0	7,0	4,3
	$\delta_{V\infty}$	[mm]	4,4	3,8	5,4	5,3	10,5	10,5	6,5
Seismic action C2 (WHA	\1H)								
Displacement for DLS	$\delta_{V,seis,C2(DLS)}$	[mm]	-	2,3	3,1	3,0	3,3	3,3	1,6
Displacement for ULS	$\delta_{\text{V,seis,C2(ULS)}}$	[mm]	-	4,8	6,4	6,1	8,2	8,2	4,8
Stainless steel A4									
Shear load in cracked ar non-cracked concrete	nd V	[kN]	-	13,9	21,1	34,7	50,8	-	-
Displacement	δ_{V0}	[mm]	-	3,4	4,9	4,8	6,7	-	-
	$\delta_{V\infty}$	[mm]	-	5,1	7,4	7,1	10,1	-	-
Seismic action C2									
Displacement for DLS	$\delta_{V,seis,C2(DLS)}$	[mm]	-	2,8	3,1	2,6	3,3	-	-
Displacement for ULS	$\delta_{V,seis,C2(ULS)}$	[mm]	-	5,6	5,8	5,0	6,9	-	-

Walraven Highload Anchor WHA1

Annex C10

Performance
Displacements under shear load